Synthesis

The Y-diagram Revisited

Structural

Behavioral

More abstract designs

Physical
CAD for VLSI 3

Behavioral Structural

Physical Synthesis

Processor Memory Bus

Algorithm Flowchart

PCBs MCMs

Physical

Structural Physical Design

CAD for VLSI 4

Behavioral Structural

Physical Synthesis

Processor Memory Bus

Algorithm Flowchart

PCBs MCMs

Physical
Register Transfers

Behavioral
- Register Transfers

Structural
- Register
- MUX
- ALU

Physical
- ASICs
- FPGAs

Boolean Equations

Behavioral
- Boolean equations

Structural
- Gates
- Flip-flops

Physical
- Cells
Transistor functions

Structural

Behavioral

Transistors

Transistor layout

Physical

Logic Design

RTL Specification
Boolean Equations

Schematic Capture

Stimulus

Component Library

Logic Simulation

Performance

Back-Annotation

Physical Design

Redesign

Logic Synthesis

Technology Mapping

Netlist

Cell Library

Redesign
Schematic Capture

- **Schematic**
 - Graphical representation of a netlist of components.

- **Schematic Capture**
 - Interactive creation of a schematic
 - Using a schematic editor
 - Uses component icons
 - Picks up components from library
 - Creates netlist
 - Input to simulation & synthesis tools

![Schematic](image)

![Netlist](image)
Logic Simulation

- Takes a logic level netlist as input, and simulate functional behavior.
 - “Netlist” obtained from schematic capture or synthesis.
 - For simulation, the behavior of components is used.
 - Available from component library
 - Gates, flip-flops, MUX, registers, adder
- Ability to handle large circuits (millions of gates)
 - Should be very fast
 - Hardware accelerators

Simulation Objectives
- Functional correctness of the netlist
 - Requires application of a set of test vectors test bench
- Timing analysis
 - Estimation of delay, critical paths
 - Hazards, races, etc.
- Test generation
 - Required for manufacture test
 - To be discussed later
Logic Synthesis

- **Input**: Boolean equations and FSMs
- **Output**: A netlist of gates and flip-flops
 - Combinational circuits and sequential circuits are typically handled separately
- **Design Goals**:
 - Minimize number of levels (delay)
 - Minimize number of gates (area)
 - Minimize signal activity (power)
- **Typical Constraints**:
 - Target library (say, only NAND and NOT gates)

• **Special Considerations**
 - Ability to handle large circuits within a reasonable amount of time.
 - Problem is known to be NP-complete
 - Ability to handle mutually conflicting requirements (area & delay)
 - Typically a fully automated process
 - Algorithms/heuristics well understood
 - Do not need user intervention
 - Use technology dependent considerations
 - Break a 20-input gate into smaller gates
 - Use gates available in the library
Technology Mapping

- **Basic Concept:**
 - During logic synthesis, map portions of the netlist to “cells” available in the cell library
 - Standard library (NAND, NOR, NOT, AOI, etc)
 - FPGA cells, standard cells

- **Objectives:**
 - Minimize area, delay, power
 - Should be fast
 - Able to handle large circuits, and large technology libraries

An Example
Logic Verification

- Verify that the synthesized netlist matches the original specification
 - Detect design errors, also synthesis errors
 - Basic objective is to ensure functional correctness, and to locate errors, if any
- Broadly two approaches:
 1. **Simulation**
 - Fast, incremental, can handle large circuits
 2. **Formal verification**
 - Slow, exhaustive, for small circuits only

Logic Synthesis
The Basic Problem

- Convert from logic equations to gate-level netlists (assume combinational logic).
 - Maximize speed
 - Minimize area, power

\[a'b'c + abc + d \rightarrow bc + d \]

Logic Specification

- PLA Format

```
.i 3
.o 3
.p 4
1x1 011
x00 010
1x0 100
x11 011
.e
```

- Sum-of-product form

\[
\begin{align*}
x &= ac' \\
y &= ac + b'c' + bc \\
z &= ac + bc
\end{align*}
\]
Logic Synthesis Problem

1. **Simplification of logic equations**
 – Reduce number of literals (and operands)

2. **Synthesis**
 – Map logic equations to gates (AND, OR, etc)

3. **Gate-level optimization**
 – Replace OR-NOT by NOR, for example
 – Delay, power, area

4. **Technology mapping**
 – Map from gates to technology library
 – FPGA, TTL chips, standard cells, etc

Two Level Logic Minimization
Basic Approaches

• Karnaugh Maps
 – For n inputs, the map contains 2^n entries
 – Objective is to find minimum prime cover
 • Minimum \Rightarrow fewest terms
 • Prime \Rightarrow choose only maximal covers
 – Don’t care terms are used to advantage
 – Difficult to automate
 • Minimum cover problem is NP-complete
 • Process can get into a local minima

• Problems with K-maps:
 – Number of cells is exponential in the number of input variables.
 • Imagine a 50-input circuit
 – Requires efficient data structures
 • For representing the function
 • For searching for minimal prime cover
 – Quine-McCluskey method
 • Easy to implement in software
 • Computational complexity remains high
Espresso: A 2-level logic optimizer

- Some notations:
 - For an \(n \)-input function, \(n \)-dimensional Boolean space
 - Each point mapped to a unique combination of the \(n \) literals
 - Entries in K-map, minterm
 - Cube
 - Conjunction (AND) of literals in an \(n \)-dimensional space
 - Points on the \(n \)-dimensional hypercube that are “1”

- Expression
 - Disjunction (OR) of cubes
- Don’t cares
 - Literals that are missing from a cube

![Diagram of a cube and don’t cares]
• **Basic Approach**

 - Minimize cover of “ON-set” of the function

 • ON-set \rightarrow set of vertices that correspond to “1”
 minterms

 • Minimum set of cubes

 • Size of the cubes can be increased by exploiting don’t care literals

• **The Espresso Algorithm (Outline)**

 - Start with the sum-of-products form (i.e., cubes covering the ON-set).

 - Expand, remove redundancy (irredundant) and reduce cubes in an iterative loop, until no further improvement is possible.

 - Perturb the solution, and repeat the previous iterative steps, as long as the time budget permits.

 • For each cube, add a subcube not covered by any other cube.

 • Expand subcubes and add them if they cover another cube.
ESPRESSO Algorithm

Forig = ON-set; /* vertices with expression TRUE */
R = OFF-set; /* vertices with expression FALSE */
D = DC-set; /* vertices with expression DC */
F = expand(Forig, R); /* expand cubes against OFF-set */
F = irredundant(F, D); /* remove redundant cubes */
do {
 do {
 F = reduce(F, D); /* shrink cubes against ON-set */
 F = expand(F, R);
 F = irredundant(F, D);
 } until cost is "stable";
 /* perturb solution */
 G = reduce_gasp(F, D); /* add cubes that can be reduced */
 G = expand_gasp(G, R); /* expand cubes that cover another */
 F = irredundant(F+G, D);
} until time is up;
ok = verify(F, Forig, D); /* check that result is correct */

Cube operation :: expand

- Make each cube as large as possible without covering a point in the OFF-set.
 - Increases the number of literals in the cover.
 - Sets the stage for finding a new and possibly better solution.
- Example:
 \[f = a'bc' + bc + ab'c' \]
 \[\text{Don't care: } ab'c \]
 \[\downarrow \]
 \[f = a'b + bc + ac + ab' \]
• **Throw out redundant cubes.**
 – Points may be covered by several cubes after the ‘expand’ step.
 – Remove smaller cubes whose points are covered by larger cubes.
 – There must be one cube for every essential vertex.

• **Example:**
 \[
 f = a'bc + bc + ac + ab' \\
 \downarrow
 f = a'bc + ac + ab' \\
 \]

One vertex in bc is covered by a'b & the other by ac
Cube operation :: reduce

- The cubes in the cover are reduced in size.
 - The number of literals in the cover is reduced.
 - Smaller cubes can expand in more directions.
 - Smaller cubes are more likely to be covered by other cubes during expansion.

- Example
 \[f = a'b + ac + ab' \]
 \[\Downarrow \]
 \[f = a'b + abc + ab'c' \]
– In general, the new cover will be different from the initial cover.
 • “expand” and “irredundant” steps can possibly find out a new way to cover the points in the ON-set.
 • Hopefully, the new cover will be smaller.
Cube operation :: perturbations

- **Reduce Gasp**
 - For each cube add a subcube not covered by other cubes.

- **Expand Gasp**
 - Expand subcubes and add them if they cover another cube.
 - Later use “irredundant” to discard redundant cubes.
 - This is a “last gasp” heuristic for exploration.
 - No ordering of cube size.
- Example:
 \[f = a' + b \Rightarrow f = a' + b + a'b + ab \]
 (Reduce Gasp)

 \[f = a'b' + a'b + ab \Rightarrow f = a'b' + a'b + b \]
 (Expand Gasp)

An example

\[x = a'b + ab + a'b' \]

Expand →

\[a'b \quad a'b' \]
\[\quad ab \quad ab' \]

Irredundant

Reduce →

\[a'b' \quad a'b' \]
\[\quad ab' \quad ab' \]

Expand

\[a'b' \quad a'b' \]
\[\quad ab \quad ab' \]

Irredundant

Cost Stable

\[x = a' + b \]
Esspresso :: conclusion

- The algorithm successively generates new covers until no further improvement is possible.
- Produces near-optimal solutions.
- Used for PLA minimization, or as a sub-function in multilevel logic minimization.
- Can process very large circuits.
 - 10,000 literals, 100 inputs, 100 outputs
 - Less than 15 minutes on a high-speed workstation
Multi Level Logic Minimization

Motivation

• In many applications, 2-level logic is unsuitable as compared to random (multilevel) logic.
 – Gates with high fanin are slow, and take more area.
 – It makes sense to transform a 2-level logic realization to multi-level logic.
• **A classical example :: XOR function**
 - For an 8-input XOR function,
 - For 2-level NAND-NAND realization
 \[8C_1 + 8C_3 + 8C_5 + 8C_7 = 128 \text{ NAND8 gates} \]
 \[1 \text{ NAND128 gate} \]
 - For 3-level XOR realization
 \[7 \text{ XOR2 gates} \Rightarrow 28 \text{ NAND2 gates} \]
 \[\text{Number of levels} = 9 \]

• **Multilevel logic optimization approaches:**
 1. Local optimization
 » Rule-based transformation
 2. Global optimization
 » Weak division
Local Optimization Technique

- Used in IBM Logic Synthesis System.
- Perform rule-based local transformations.
 - Objective → reduce area, delay, power.
 - Developing a good set of rules is a challenge.
 - Should be comprehensive enough so as to completely explore the design space.
- Basic idea:
 - Apply a transformation which reduces cost.
 - Iterate and continue the transformations as long as solution keeps improving.

AND/OR transformations
- Reduce the size of the circuit, critical path.
- Typical transformations:
 a . 1 = a
 a + 1 = 1
 a + a’ = 1
 a . a’ = 0
 (a’)’ = a
 a + a’ . b = a + b
 xor (xor(a1,a2,..,an), b) = xor (a1,a2,..,an,b)
- Transform the AND/OR form to NAND (or NOR) form.
• **NAND (NOR) transformations**
 - Some synthesis systems assume that all gates are of the same type (NAND or NOR).
 - Does not require technology mapping.
 - Rules framed that transform one NAND (NOR) network to another.
 - Examples:

 \[
 \text{NAND} \left(\text{NOT} \left(\text{NAND} \left(a, b \right) \right), c \right) = \text{NAND} \left(a, b, c \right)
 \]

 \[
 \text{NAND} \left(\text{NAND} \left(a, b, c \right), \text{NAND} \left(a, b, c' \right) \right) = \text{NAND} \left(a, b \right)
 \]

How complex is the algorithm?

• \(n \to\) number of circuit nodes

 \(m \to\) number of rules

 - Ordering of rule (by cost reduction) takes \(O(mn \log mn)\) time.
 - The process has to be repeated many times.

• **To speed up, we can use lazy evaluation.**

 - We only check those circuit nodes which were modified in the previous iteration.

 \(O(m \log m)\) for every rule application.
Global Optimization Technique

- Used in GE Socrates.
 - Looks at all the equations at one time.
- Perform weak division.
 - Divide out common sub-expressions.
 - Literal count gets reduced.
- The following iterative steps are carried out:
 - Generate the candidate sub-expressions.
 - Select a sub-expression to divide.
 - Divide functions by selected sub-expression.

Example

- **Original equations:**
 \[f_1 = a.b.c + b.c.d + b.e.g \]
 \[f_2 = b.c.f.h + d.g + a.b.g \]
 \[\text{No. of literals} = 18 \]

- We find literals saved for sub-expressions:
 - \(b.c \rightarrow 4 \)
 - \(a.b \rightarrow 2 \)
 - \(a + d \rightarrow 2 \)
 - \(b.g \rightarrow 2 \)

Select the sub-expression bc.

- **Modified equations** (after iteration 1):
 \[f_1 = (a + d).u + b.e.g \]
 \[f_2 = u.f.h + d.g + a.b.g \]
 \[u = b.c \]
 \[\text{No. of literals} = 14 + 2 \]
\[f_1 = (a + d).u + b.e.g \]
\[f_2 = u.f.h + d.g + a.b.g \]
\[u = b.c \]

- Literals saved for the sub-expressions:
 \[b.g \] → 2

- **Modified equations** (after iteration 2):
 \[f_1 = (a + d).u + e.v \]
 \[f_2 = u.f.h + d.g + a.v \]
 \[u = b.c \]
 \[v = b.g \] → No. of literals = 12+4

- No common sub-expressions → **STOP**

About the algorithm

- **Basically a greedy algorithm**
 - Can get stuck in local minima.
 - Give a “**push**” to come out of local minima.
 - Like the “gasp” function in Espresso.

- Generation of all candidate expressions is expensive.
 - Some heuristic used.
Multilevel Logic Interactive Synthesis System (MIS)

- A very popular & widely used algorithm.
 - Uses factoring of equations.
 - Similar to weak division used in Socrates.
 - The target technology is CMOS gate.
 - Complex gates realizing any complex functions.
 - Example:
 \[
 f' = (a + b + c) \\
 g' = (a + b) \cdot (d + e + f) \cdot h
 \]

Basic Concept

- For global optimization,
 - Use algebraic factorization to identify common sub-expressions.
 - Avoid exponential search.
- For local optimization,
 - Identify 2-level sub-circuits.
 - Minimize them using Espresso, or some similar approach.
Global Optimization Approach

• Given a netlist of gates
 – Scan the network.
 – Apply simple heuristics to “clean up” the netlist.
 • Constant propagation
 • Double inverter elimination
 • Espresso minimization of each equation
 – Then proceed for global optimization with a view to minimize area.

• Basically an iterative approach.
 • Enumerate all common factors and identify the “best” candidate.
 • Equations themselves may be common factors.
 • Invert an equation if it helps.
 – Factors may show up in the inverted form.
 • Number of literals used to estimate area.

• Factoring can reduce area.
 – An equation in simple sum-of-products form can have many literals.
 • Many transistors for CMOS realization.
 – Factoring the equation reduces the number of literals.
 • Reduces number of transistors in CMOS realization.
Local Optimization Approach

• Next step is to look at the problem locally.
 – Each equation treated as a complex gate.
 • Optimize two or more gates that share one or more literals.
 • Break a large gate into smaller gates.
 – For each equation, the don’t care input set is obtained from the neighborhood gates.
 • Minimized using Espresso.

• Also an iterative step.

Binary Decision Diagrams (BDD)
Introduction

• Representation of Boolean functions
 – Canonical
 • Truth table
 • Karnaugh map
 • Set of minterms
 – Non-Canonical
 • Sum of products
 • Product of sums
 • Factored form
 • Binary Decision Diagram (Proposed by Akers in 1978)

What is Binary Decision Diagram?

• A data structure used to represent a Boolean function.
• Represented as a rooted, directed, acyclic graph, which consists of decision nodes and two terminal nodes (0-terminal and 1-terminal).
 – Each decision node is labeled by a Boolean variable and has two child nodes called low child, and high child.
 – The edge from a node to a low (high) child represents an assignment of the variable to 0 (1).
• A BDD is said to be ordered if different variables appear in the same order on all paths from the root.
Example

- Construction of a BDD is based on the Shannon expansion of a function.
Shannon Expansion

- Given a Boolean function \(f(x_1, x_2, \ldots, x_i, \ldots, x_n) \)
- Positive cofactor
 \(f_i^1 = f(x_1, x_2, \ldots, 1, \ldots, x_n) \)
- Negative cofactor
 \(f_i^0 = f(x_1, x_2, \ldots, 0, \ldots, x_n) \)
- Shannon’s expansion theorem states that
 \[f = x_i' f_i^0 + x_i f_i^1 \]
 \[f = (x_i + f_i^0)(x_i' + f_i^1) \]

How to construct BDD?

\[
f = ac + bc + a'b'c' \\
= a'(b'c' + bc) + a(c + bc) \\
= a'(b'c' + bc) + a(c)
\]

This is the first step. The process is continued for all input variables.
\[f = ac + bc + a'b'c' \]
\[= a'(b'c' + bc) + a(c + bc) \]
\[= a'(b'c' + bc) + a(c) \]

Expand by a

Expand by b

Expand by c

Variable ordering: a, b, c
Variable Ordering (OBDD)

- The size of a BDD is determined both by the function being represented and the chosen ordering of the variables.
 - For some functions, the size of a BDD may vary between a linear to an exponential range depending upon the ordering of the variables.
- An example:
 \[f(x_1, \ldots, x_{2n}) = x_1x_2 + x_3x_4 + \ldots + x_{2n-1}x_{2n} \]
 Variable ordering: \(x_1 < x_3 < \ldots < x_{2n-1} < x_2 < x_4 < \ldots < x_{2n} \)
 BDD requires \(2^{n+1} \) nodes to represent the function.
 Variable ordering: \(x_1 < x_2 < x_3 < x_4 < \ldots < x_{2n-1} < x_{2n} \)
 BDD requires \(2n \) nodes to represent the function.

BDD for the function \(f(x_1, \ldots, x_8) = x_1x_2 + x_3x_4 + x_5x_6 + x_7x_8 \) using bad variable ordering
• **Important point to note:**
 – It is essential to find a good variable ordering when using the OBDD data structure in practice.
 – The problem of finding the best variable ordering is NP-hard.
 – Several heuristics for variable ordering have been proposed.
Reduced Ordered BDD (ROBDD)

- An ordered binary decision diagram is said to be reduced (ROBDD) if the following two graph reduction rules are applied:
 - Merge any isomorphic subgraphs.
 - Eliminate any node whose two children are isomorphic.
- The advantage of an ROBDD is that it is canonical (unique) for a given function.
 - This property makes it useful in functional equivalence checking.

Some Reduction Rules

![Diagram showing reduction rules]
Some Reduction Rules (contd.)

Construction of ROBDD: an example
Some Benefits of BDD

- **Checking for tautology is trivial.**
 - BDD is a constant 1.

- **Complementation.**
 - Given a BDD for a function f, the BDD for f' can be obtained by simply interchanging the terminal nodes.

- **Equivalence check.**
 - Two functions f and g are equivalent if their BDDs (under the same variable ordering) are the same.
Use of BDD in Synthesis

- BDD is canonical for a given variable ordering.
- It implicitly uses factored representation:

\[\begin{align*}
 x' \cdot h + x \cdot h &= h \\
 a \cdot h + b \cdot h &= (a + b)h
\end{align*} \]

- Variable reordering can reduce the size of BDD.
 - Implicit logic minimization.
- Some redundancy is also removed during the construction of BDD itself.
MUX realization of functions

MUX-based Functional Decomposition

An example ====>
To Summarize

- BDDs have been used traditionally to represent and manipulate Boolean functions.
 - Used in synthesis systems.
 - Used in formal verification tools.
 - Efficient packages to manipulate BDDs are available.