Streaming Multimedia Applications
Multimedia Networking
Multimedia Applications?

• **What are they?**
 – An application that deals with one of more of the following data types:
 • Text
 • Images
 • Audio
 • Video

• **Most common scenario today:**
 – Transmission, processing, and rendering multimedia information over the network.
Some Example Applications

- Common multimedia applications on the Internet:
 - Streaming stored audio and video.
 - Streaming live audio and video.
 - Real-time interactive audio and video.
- All the above have common characteristics:
 - Delay sensitivity.
 - End-to-end packet delay.
 - Delay jitter :: variability of packet delay within the same packet stream.
– Can tolerate packet losses.
 • Occasional packet losses cause minor disturbances during playback.

• Requirement is just the reverse as compared to normal data transmission.
 – Cannot tolerate losses.
 – Can tolerate delay variations.
Application QoS Categories

• **Hard QoS:**
 – The application may malfunction if the QoS constraints cannot be met.
 – Typical examples:
 • Critical patient monitoring systems.
 • Missile control systems.

• **Soft QoS:**
 – Functionally application performs correctly.
 – Typical examples:
 • Most multimedia applications.
Streaming Stored Multimedia

- **Basic concept:**
 - The basic media file is stored at the source.
 - The file is transmitted to the client when requested.
 - The client starts playing the media before the whole of it is transferred.
- **Central concept to streaming.**
 - Minimum continuous rate of transfer to be maintained for jitter-free playback.
Client playing a part of the video, and sever sending the later part, are carried out in overlapped fashion.
• **Typical client functionality:**
 – Pause, fast forward, play, rewind, etc., just like normal media players.
 – An initial delay (5-10 sec) for the client to get resynchronized with the origin server.
Streaming Live Multimedia

• **Basic concept:**
 – Multimedia content not stored anywhere a priori.
 • Generated on the fly and broadcasted.
 – **Typical examples:**
 • Live news feed.
 • Live cricket match over the Internet.
 – **Client usually has a playback buffer.**
 • Content buffered during transmission.
 • Allows rewind (but no fast forward).

• **Other constraints:**
 – Depending on the latency of the path, the live stream may play on the desktop after an appreciable delay (10-20 sec).
 – **Timing constraint for jitter-less playback is still present.**
Real-time Interactive Multimedia

- **Basic concept:**
 - Interactive in the sense that the content to be transmitted is decided by the end parties dynamically.
 - Typical examples:
 - IP telephony
 - Video conferencing
 - On-line games
 - End-to-end delay requirements are important.
 - Includes application-level and also network delays.
 - About 200 msec considered to be good enough for audio.
 - Beyond 500 msec, audio may be unacceptable.
How Internet Handles Multimedia Today?

• Internet is driven by TCP/UDP/IP.
 – Multimedia transport takes place on top of these only.
 – No guarantee on throughput, losses, etc.

• Internet multimedia applications use application-level techniques to get the best out of the underlying service.

• Next generation Internet can handle this much better.
Streaming Multimedia
Multimedia on Internet

• **The simple approach:**
 – Multimedia object stored as a file on the web server.
 – File transferred to client as HTTP object.
 – Client receives the whole file and stores it in a buffer.
 – Client invokes the media player to play the received file.

• **Basically:**
 – No streaming, no pipelining, long delay.
• **The streaming approach:**
 – Browser requests for a “metafile” from the web server.
 – Browser launches the media player, and passes the “metafile” to it.
 – The media player directly contacts the web server using HTTP.
 – Server streams audio/video object in its HTTP response to the media player.
 – Usually considered unsatisfactory:
 • Little control, non-interactive.
• **Using a separate streaming server:**

 – Provides the best performance.
 – This architecture can use non-HTTP (may be proprietary) protocols between server and media player.
 – Can also use UDP instead of TCP.
 • For better response.
Web Browser

Web Server

Media Player

Streaming Server
Some Issues in Streaming

- Use of client buffering
 - Allows to compensate for network-added delay and delay jitter.

- Whether to use TCP or UDP
 - TCP
 - Transfer rate fluctuates due to TCP congestion control.
 - Better quality because no packets are lost.
 - More delay variations due to retransmission.
 - UDP
 - Server sends data at rate appropriate for client. Does not depend on network congestion.
 - Send rate = encoding rate = constant rate
 - Short playout delay (2-5 seconds) to compensate for network delay jitter.
• **Variability in client rates**
 – How to handle variations in client receive rate capabilities?
 • 33 Kbps dialup
 • 2 Mbps leased line
 • 100 Mbps Ethernet
 – **Common solution:**
 • Server stores multiple copies of the content (say, video), that have been encoded at different rates.
Real Time Streaming Protocol

- **RTSP**
 - Gives user much better control over streaming media.
- **RTSP is**
 - A client-server application-layer protocol.
 - Provides control to the user:
 - Pause, play, rewind, forward, repositioning, etc.
- **What RTSP is not**
 - Does not specify how the media is encoded and compressed.
 - Does not restrict the transport layer protocol.
 * Can be TCP or UDP.
 - Details about client-side buffering is also not specified.
How RTSP works?

- Like the FTP protocol, RTSP also uses “out-of-band” control.
 - RTSP control messages uses different port number than the media stream.
 - Port 554.
 - The media stream is considered “in-band”.
- Typical scenario:
 - The “metafile” is first sent to the web browser over HTTP.
 - The browser launches media player.
 - The media player sets up an RTSP control connection, and a data connection to the streaming server.
- Two servers:
 - A web server
 - A streaming server
A Typical Metafile

<title>Trailer</title>
<session>
 <group language=en>
 <switch>
 <track type=audio
 e="PCMU/8000/1"
 src = "rtsp://stream.com/trailer/audio.en/lofi">
 <track type=audio
 e="DVI4/16000/2" pt="90 DVI4/8000/1"
 src="rtsp://stream.com/trailer/audio.en/hifi">
 </switch>
 <track type="video/jpeg"
 src="rtsp://stream.com/trailer/video.en">
 </group>
</session>
RTSP Operation

- **Web Browser** to **Web Server** via HTTP GET
- **Presentation description**
- **Media Player** to **Media Server**
- **SETUP**
- **PLAY**
- **MEDIA STREAM**
- **PAUSE**
- **TEARDOWN**
RTSP Exchange Example

C: SETUP rtsp://stream.com/trailer/audio RTSP/1.0
 Transport: rtp/udp; compression; port=3056; mode=PLAY

S: RTSP/1.0 200 OK
 Session 4231

C: PLAY rtsp://stream.com/traileer/audio.en/lofi RTSP/1.0
 Session: 4231
 Range: npt=0-

C: PAUSE rtsp://stream.com/trailer/audio.en/lofi RTSP/1.0
 Session: 4231
 Range: npt=37

C: TEARDOWN rtsp://stream.com/trailer/audio.en/lofi RTSP/1.0 Session: 4231

S: RTSP/1.0 200 OK
Internet Telephony
Introduction

• A classic application of interactive multimedia over Internet.
• Voice chat (PC-to-PC, say) over the Internet.
• How is basically works?
 – The speaker speaks into the microphone connected to the PC.
 • Alternating talk spurts and silent periods.
 • Data rate of 8000 bytes per second generated during each talk spurt (64 Kbps).
 – Packets get generated only during the talk spurts,
 • Every 20 msec, the sender gathers the data into chunks => 160 bytes per chunk (maximum).
 – Application-layer header is added to each chunk.
 – The data chunk and the header is encapsulated into a UDP packet.
 – The UDP packets are transmitted.
• **To summarize:**
 – An UDP packet gets transmitted every 20 msec during a talk spurt.
 – No packets generate during idle periods.
Packet Loss Analysis

- Two main reasons for quality loss:
 - Normal packet loss
 - Some IP packets are lost, and are not delivered at the destination.
 - Loss due to excessive delay
 - An IP packet arrives, but too late to be played.
 - Delays < 150 msec are normally not detected. Delays > 400 msec can be annoying.
- Depending on encoding technique, packet loss rate of up to 20% can be tolerated.
Handling Jitters

• Variable end-to-end delays in consecutive packets can cause jitters.

• How to handle / remove jitters?
 – Use sequence number with each packet.
 • Out-of-order playback can be avoided.
 – Timestamps in the packet header.
 • Works similar to sequence number.
 – Delayed playout
 • The playout of packets is delayed long enough so that most of the packets are received before their playout times.
 • Delay can be adaptive.
Protocols Used

• Two widely used protocols:
 – Session Initiation Protocol (SIP)
 – ITU standard H.323
Session Initiation Protocol (SIP)
Basic Idea

• SIP is an application layer protocol.
 – Used to establish, manage and terminate multimedia sessions.
 – Various types of sessions are possible:
 • Two-party, multi-party, multi-cast
• SIP can run on either TCP or UDP.
SIP Messages

- Six message types are defined in SIP:
 - INVITE – caller initializes a session
 - ACK – caller confirms after callee answers the call
 - BYE – used to terminate a session
 - OPTIONS – used to know the capabilities of a host
 - CANCEL – an ongoing initialization process can be aborted
 - REGISTER – to make a connection when the callee is not available
Sender / Receiver Addressing

• **SIP is flexible in specifying the address.**
 – Typically uses the IP address, email address, and the telephone number to identify the sender and the receiver.
 – Must be specified in a standard SIP format.
Simple SIP Session

• Three parts:
 – Establishing a session
 • Uses a 3-way handshake protocol.
 – Communication
 • Caller and callee uses two temporary ports for the purpose.
 – Terminating the session
 • Either party can initiate this.
Exchange of voice packets

INVITE

OK

ACK

BYE
The H.323 Standard
Basic Idea

• A standard that allows telephones on the public network to talk to computers on the Internet.

• Uses a gateway:
 – Connects the telephone network to the Internet.
 – Translates messages from one protocol stack to another.
Various Protocols Used

- **H.323 uses a number of protocols:**
 - **G.71 or G723.1**
 - Used for compression.
 - **H.245**
 - Allows parties to negotiate the compression method.
 - **Q.931**
 - For establishment and termination of connections.
 - **H.225**
 - Used for registration with the gatekeeper.
Typical Operation

- **Step 1:** Host sends a broadcast message; gatekeeper responds with its IP address.
- **Step 2:** Using H.225, the host and gatekeeper negotiate bandwidth required.
- **Step 3:** Host, gatekeeper, gateway, and telephone communicate using Q.931 for connection setup.
- **Step 4:** All the four use H.245 to negotiate the compression method to be used.
- **Step 5:** The host and the telephone exchange audio through the gateway using RTP & RTCP protocols.
- **Step 6:** All the four use Q.931 to terminate the connection.
Real Time Protocol (RTP)
Introduction

- Real-time Transport Protocol (RTP) is used to handle real-time traffic over the Internet.
- RTP does not have an inherent mechanism to deliver packets.
 - Uses UDP for the purpose.
 - RTP basically performs sequencing, time-stamping, mixing, etc. for real-time traffic requirements.
Transport Layer

IP

UDP

RTP
• **Typical multimedia sessions:**
 – Relay on Real-time Transport Protocol (RTP) for transmitting data.
 – Relay on Real-time Transport Control Protocol (RTCP) for transmitting control information.
Some Problems

• A typical complex session today:
 – Number of entities involved in a multimedia session is large.
 – In asymmetric heterogeneous broadcast environments the RTCP protocol becomes ineffective (e.g. satellite networks).

• So we must:
 – Extend RTCP to address scalability, and its inability to operate effectively in asymmetric broadcast environments.
RTP/RTCP: Introduction

- **Real-time Transport Protocol (RTP):**
 - This is an Internet standard for sending real-time data over the network.
 - Examples: Internet telephony, interactive audio/video.
 - It consists of a data and control (RTCP) component that work together.
 - **Data:**
 - Provides support for streaming data.
 - Timing reconstruction, loss detection, etc.
– Real-time Transport Control Protocol (RTCP):
 • This is the control part of RTP, and provides the following functions:
 Data delivery monitoring
 Source identification
 Allow session member to calculate the rate to send status messages
• **Which port numbers do they use?**
 – RTP or RTCP are not assigned any well-known port number.
 – The port numbers are assigned on demand.
 – **Restriction:**
 • For RTP, port number must be even.
 • For RTCP, port number must be odd.
RTP Packet Header

V, P, X, CC, M, PT Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (SSRC) identifiers

32 bits

V: version, P: padding, X: extension, CC: CSRC count, M: maker, PT: payload type
RTCP Status Messages

• Typical information sent:
 – Time Stamps:
 • Used to correlate time stamp of a given session to wall-clock time.
 • Can be used to make rough estimate of round-trip propagation time between receivers.
 – Fraction of packets lost.
 – Total number of packets sent.
 – Sender ID of the Status message.
Design Choice: TCP or RTP

• Typical requirement of multimedia applications:
 – Constant data rate is more important, rather than having a guarantee of receiving all packets, and that too in order.
 – Examples: streaming audio, video.

• TCP:
 – Good for applications that need guarantee on delivery and delivery order.
 • The resend protocol of TCP can cause unacceptable delays in real-time data streaming applications.
• **RTP:**
 – Specifically addresses this issue.
 – The protocol is designed to focus on:
 • Supplying applications with constant data rate.
 • Giving applications feedback on the quality of a link (can help adapt to changing link conditions).
RTP: Some Assumptions Made

• **Assumption 1**
 – The entities are fully connected to each other. This allows a feedback path for control/status information between them.
 • Entities broadcast its control/status information to all other entities.
 • To limit the total amount of control traffic, the amount of network bandwidth allocated for control information is controlled.

• **Assumption 2**
 – All entities are considered to be equal.
 • Constant rate for all entities to receive control information.
 • No variation among entities is assumed.
How to Broadcast Control Info?

- Consider an asymmetric/ unicast environment like satellite networks:
 - A single entity needs to broadcast to all other entities.
 - These receiver entities are usually not directly connected to each other.
 - Via the satellite.
 - Therefore there is no back channel for control/status information to be sent to all entities at once.
 - Can use the satellite for broadcast.
 - A signal repeater in the sky.
• Basically …
 – Instead of having an entity broadcast to all other entities.
 • Individual entity sends control/status information to the source (i.e. satellite).
 • Source (satellite) broadcast information to all entity receivers (Reflection).
Satellite

E1 sends to satellite
Satellite broadcasts

Satellite

E1 E2 E3 En
Summarization

• An alternative to blind broadcast over unicast channel.
 – Some of the information sent in control status messages can be only important to the Source.
 – Summarization:
 • Source gathers report packets from many receiver entities.
 • Source processes this data and broadcasts a summary report which is of a much smaller size than pure Reflection.