Problem Reduction Search:
AND/OR Graphs & Game Trees

Course: CS40002
Instructor: Dr. Pallab Dasgupta

Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Problem Reduction Search

- Planning how best to solve a problem that can be recursively decomposed into sub-problems in multiple ways
 - Matrix multiplication problem
 - Tower of Hanoi
 - Blocks World problems
 - Theorem proving
Formulations

- **AND/OR Graphs**
 - An OR node represents a choice between possible decompositions
 - An AND node represents a given decomposition

- **Game Trees**
 - Max nodes represent the choice of my opponent
 - Min nodes represent my choice
The AND/OR graph search problem

- Problem definition:
 - Given: \([G, s, T] \) where
 - \(G \): implicitly specified AND/OR graph
 - \(S \): start node of the AND/OR graph
 - \(T \): set of terminal nodes
 - \(h(n) \): heuristic function estimating the cost of solving the sub-problem at \(n \)

- To find:
 - A minimum cost solution tree
Algorithm AO*

1. Initialize: Set $G^* = \{s\}$, $f(s) = h(s)$
 If $s \in T$, label s as SOLVED

2. Terminate: If s is SOLVED, then Terminate

3. Select: Select a non-terminal leaf node n from the marked sub-tree

4. Expand: Make explicit the successors of n
 For each new successor, m:
 Set $f(m) = h(m)$
 If m is terminal, label m SOLVED

5. Cost Revision: Call cost-revise(n)

Cost Revision in AO*: cost-revise(n)

1. Create $Z = \{n\}$
2. If $Z = \emptyset$ return
3. Select a node m from Z such that m has no descendants in Z
4. If m is an AND node with successors r_1, r_2, \ldots, r_k:

 Set $f(m) = \sum [f(r_i) + c(m, r_i)]$

 Mark the edge to each successor of m

 If each successor is labeled SOLVED, then label m as SOLVED
Cost Revision in AO*: \text{cost-revise}(n)

5. If \(m \) is an OR node with successors \(r_1, r_2, \ldots, r_k \):
 \[
 \text{Set } f(m) = \min \{ f(r_i) + c(m, r_i) \}
 \]
 Mark the edge to the best successor of \(m \)
 If the marked successor is labeled SOLVED, label \(m \) as SOLVED

6. If the cost or label of \(m \) has changed, then insert those parents of \(m \) into \(Z \) for which \(m \) is a marked successor

7. Go to Step 2.
Searching OR Graphs

- How does AO* fare when the graph has only OR nodes?
Searching Game Trees

- Consider an OR tree with two types of OR nodes, namely Min nodes and Max nodes.
- In Min nodes, select the min cost successor.
- In Max nodes, select the max cost successor.
- Terminal nodes are winning or loosing states.
 - It is often infeasible to search up to the terminal nodes.
 - We use heuristic costs to compare non-terminal nodes.
Shallow and Deep Pruning

Shallow Cut-off

- Root
 - A
 - B
 - C
- Max node
- Min node

Deep Cut-off

- Root
 - F
 - D
 - E
 - G
- Max node
- Min node
Alpha-Beta Pruning

- **Alpha Bound of J:**
 - The max current val of all MAX ancestors of J
 - Exploration of a min node, J, is stopped when its value equals or falls below alpha.
 - In a min node, we update beta

- **Beta Bound of J:**
 - The min current val of all MIN ancestors of J
 - Exploration of a max node, J, is stopped when its value equals or exceeds beta
 - In a max node, we update alpha

- **In both min and max nodes, we return when** $\alpha \geq \beta$
Alpha-Beta Procedure: \(V(J; \alpha, \beta) \)

1. If \(J \) is a terminal, return \(V(J) = h(J) \).
2. If \(J \) is a max node:
 - For each successor \(J_k \) of \(J \) in succession:
 - Set \(\alpha = \max \{ \alpha, V(J_k; \alpha, \beta) \} \)
 - If \(\alpha \geq \beta \) then return \(\beta \), else continue
 - Return \(\alpha \)
3. If \(J \) is a min node:
 - For each successor \(J_k \) of \(J \) in succession:
 - Set \(\beta = \min \{ \beta, V(J_k; \alpha, \beta) \} \)
 - If \(\alpha \geq \beta \) then return \(\alpha \), else continue
 - Return \(\beta \)