Deadlock-free Packet Switching

CS60002: Distributed Systems

Pallab Dasgupta
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur
Store and forward deadlock

Buffer-size = 5

Node s sending 5 packets to v through t
Node v sending 5 packets to s through u
Model

- The network is a graph $G = (V, E)$
- Each node has B buffers

Moves:
- **Generation.** A node u creates a new packet p and places it in an empty buffer in u. Node u is the source of p.
- **Forwarding.** A packet p is forwarded from a node u to an empty buffer in the next node w on its route.
- **Consumption.** A packet p occupying a buffer in its destination node is removed from the buffer.
The packet switching controller has the following requirements:

1. The consumption of a packet (at its destination) is always allowed.
2. The generation of a packet in a node where all buffers are empty is always allowed.
3. The controller uses only local information, that is, whether a packet can be accepted in a node u depends only on information known to u or contained in the packet.
Solutions

• **Structured solutions**
 – **Buffer-graph based schemes**
 • The destination scheme
 • The hops-so-far scheme
 • Acyclic orientation based scheme

• **Unstructured solutions**
 – Forward count and backward count schemes
 – Forward state and backward state schemes
A buffer graph (for, G, B) is a directed graph BG on the buffers of the network, such that

1. BG is acyclic (contains no directed cycle);
2. bc is an edge of BG if b and c are buffers in the same node, or buffers in two nodes connected by a channel in G; and
3. for each path $\pi \in P$ there exists a path in BG whose image is π.
 - P is the collection of all paths followed by the packets – this collection is determined by the routing algorithm.
Suitable buffer and guaranteed path

Let p be a packet in node u with destination v.

- A buffer b in u is suitable for p if there is a path in BG from b to a buffer c in v, whose image is a path that p can follow in G.

- One such path in BG will be designated as the guaranteed path and $nb(p, b)$ denotes the next buffer on the guaranteed path.

- For each newly generated packet p in u there exists a designated suitable buffer, $fb(p)$ in u.
The buffer-graph controller

1. The generation of a packet p in u is allowed iff the buffer $fb(p)$ is free. If the packet is generated it is placed in this buffer.

2. The forwarding of a packet p from a buffer in u to a buffer in w is allowed iff $nb(p, b)$ (in w) is free. If the forwarding takes place p is placed in $nb(p, b)$.

The buffer-graph controller is a deadlock-free controller.
The Destination Scheme

- Uses N buffers in each node u, with a buffer $b_u[v]$ for each possible destination v
 - It is assumed that the routing algorithm forwards all packets with destination v via a directed tree T_v rooted towards v.

The buffer graph is defined by $BG = (B, E)$, where $b_u[v_1]b_w[v_2] \in E$ iff $v_1 = v_2$ and uw is an edge of T_{v_1}.

There exists a deadlock-free controller for arbitrary connected networks that uses N buffers in each node and allows packets to be routed via arbitrarily chosen sink trees
The Hops-so-far Scheme

- Node u contains $k + 1$ buffers $b_u[0], \ldots, b_u[k]$.
- It is assumed that each packet contains a hop-count indicating how many hops the packet has made from its source.

The buffer graph is defined by $BG = (B, E)$, where $b_u[i]b_w[j] \in E$ iff $i + 1 = j$ and uw is an edge of the network.

There exists a deadlock-free controller for arbitrary connected networks that uses $D+1$ buffers in each node (where D is the diameter of the network), and requires packets to be sent via minimum-hop paths.
Acyclic Orientation based Scheme

Goal: To use only a few buffers per node

- An acyclic orientation of G is a directed acyclic graph obtained by directing all edges of G.
- A sequence G_1, \ldots, G_B of acyclic orientations of G is an *acyclic orientation cover of size B* for the collection P of paths if each path $\pi \in P$ can be written as a concatenation of B paths π_1, \ldots, π_B, where π_i is a path in G_i.

- A packet is always generated in node u in buffer $b_u[1]$.
- A packet in buffer $b_u[i]$ that must be forwarded to node w is placed in buffer $b_w[i]$ if the edge between u and w is directed towards w in G_i, and to $b_w[i + 1]$ if the edge is directed towards u in G_i.

If an acyclic orientation cover for P of size B exists, then there exists a deadlock-free controller using only B buffers in each node.
Forward and Backward-count Controllers

Forward-count Controller:

- For a packet p, let s_p be the number of hops it still has to make to its destination ($0 \leq s_p \leq k$)
- For a node u, f_u denotes the number of free buffers in u ($0 \leq f_u \leq B$)

The controller accepts a packet p in node u iff $s_p < f_u$.

If $B > k$ then the above controller is a deadlock-free controller

Backward-count Controller:

- For a packet p, let t_p be the number of hops it has made from its source

The controller accepts a packet p in node u iff $t_p > k - f_u$.
Forward and Backward-state Controllers

Forward-state Controller:
- For a node u define (as a function of the state of u) the state vector as (j_0, \ldots, j_k), where j_s is the number of packets p in u with $s_p = s$.

The controller accepts a packet p in node u with state (j_0, \ldots, j_k) iff:

$$\forall i, 0 \leq i \leq s_p : i < B - \sum_{s=i}^{k} j_s$$

If $B > k$ then the above controller is a deadlock-free controller

Backward-state Controller:
- Define the state vector as (i_0, \ldots, i_k), where i_t is the number of packets in node u that have made t hops.

The controller accepts a packet p in node u with state (i_0, \ldots, i_k) iff:

$$\forall j, t_p \leq j \leq k : j > \sum_{t=0}^{j} i_t - B + k$$
Forward-state versus Forward-count

- Forward-state controller is more liberal than the forward-count controller

- Every move allowed by the forward-count controller is also allowed by the forward-state controller