Agreement Protocols

CS60002: Distributed Systems

Pallab Dasgupta
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur
Classification of Faults

- Based on components that failed
 - Program / process
 - Processor / machine
 - Link
 - Storage
 - Clock

- Based on behavior of faulty component
 - Crash – just halts
 - Failstop – crash with additional conditions
 - Omission – fails to perform some steps
 - Byzantine – behaves arbitrarily
 - Timing – violates timing constraints
Classification of Tolerance

• Types of tolerance:
 – Masking – system always behaves as per specifications even in presence of faults
 – Non-masking – system may violate specifications in presence of faults. Should at least behave in a well-defined manner

• Fault tolerant system should specify:
 – Class of faults tolerated
 – What tolerance is given from each class
Core problems

- Agreement (multiple processes agree on some value)
- Clock synchronization
- Stable storage (data accessible after crash)
- Reliable communication (point-to-point, broadcast, multicast)
- Atomic actions
Overview of Consensus Results

- Let f be the maximum number of faulty processors.

- Tight bounds for message passing:

<table>
<thead>
<tr>
<th></th>
<th>Crash failures</th>
<th>Byzantine failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of rounds</td>
<td>$f + 1$</td>
<td>$f + 1$</td>
</tr>
<tr>
<td>Total number of</td>
<td>$f + 1$</td>
<td>$3f + 1$</td>
</tr>
<tr>
<td>processors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Message size</td>
<td>polynomial</td>
<td>polynomial</td>
</tr>
</tbody>
</table>
Overview of Consensus Results

- **Impossible in asynchronous case.**
 - Even if we only want to tolerate a single crash failure.
 - True both for message passing and shared read-write memory.
Consensus Algorithm for Crash Failures

Code for each processor:

\[v := \text{my input} \]

at each round 1 through \(f+1 \):

if I have not yet sent \(v \) then send \(v \) to all
wait to receive messages for this round

\[v := \text{minimum among all received values and current value of } v \]

if this is round \(f+1 \) then decide on \(v \)
Correctness of Crash Consensus Algo

• **Termination:** By the code, finish in round $f + 1$.

• **Validity:** Holds since processors do not introduce spurious messages
 - if all inputs are the same, then that is the only value ever in circulation.
Correctness of Crash Consensus Algo

Agreement:

- Suppose in contradiction \(p_j \) decides on a smaller value, \(x \), than does \(p_i \).
- Then \(x \) was hidden from \(p_i \) by a chain of faulty processors:
 - There are \(f + 1 \) faulty processors in this chain, a contradiction.

\[q_1 \xrightarrow{\text{round 1}} q_2 \xrightarrow{\text{round 2}} q_f \xrightarrow{\text{round } f} q_{f+1} \xrightarrow{\text{round } f+1} p_j \]

\[p_i \]
Performance of Crash Consensus Algo

- Number of processors $n > f$
- $f + 1$ rounds
- $n^2 \cdot |V|$ messages, each of size $\log |V|$ bits, where V is the input set.
Lower Bound on Rounds

Assumptions:

- $n > f + 1$
- every processor is supposed to send a message to every other processor in every round
- Input set is $\{0, 1\}$
Byzantine Agreement Problems

Model:
- Total of n processes, at most m of which can be faulty
- Reliable communication medium
- Fully connected
- Receiver always knows the identity of the sender of a message
- Byzantine faults
- Synchronous system
 - In each round, a process receives messages, performs computation, and sends messages.
Byzantine Agreement

- Also known as Byzantine Generals problem
 - One process x broadcasts a value v
 - **Agreement Condition:** All non-faulty processes must agree on a common value.
 - **Validity Condition:** The agreed upon value must be v if x is non-faulty.
Variants

- **Consensus**
 - Each process broadcasts its initial value
 - Satisfy agreement condition
 - If initial value of all non-faulty processes is v, then the agreed upon value must be v

- **Interactive Consistency**
 - Each process k broadcasts its own value v_k
 - All non-faulty processes agree on a common vector (v_1, v_2, \ldots, v_n)
 - If the k^{th} process is non-faulty, then the k^{th} value in the vector agreed upon by non-faulty processes must be v_k

- Solution to Byzantine agreement problem implies solution to other two
Byzantine Agreement Problem

- **No solution possible if:**
 - asynchronous system, or
 - \(n < (3m + 1) \)

- **Lower Bound:**
 - Needs at least \((m+1)\) rounds of message exchanges

- "Oral" messages – messages can be forged / changed in any manner, but the receiver always knows the sender
Proof

Theorem: There is no t-Byzantine-robust broadcast protocol for $t \geq \frac{N}{3}$

Scenario-0: T must decide 0

Scenario-1: U must decide 0

Scenario-2:
-- similar to Scenario-0 for T
-- similar to Scenario-1 for U
-- T decides 0 and U decides 1
Lamport-Shostak-Pease Algorithm

- Algorithm $Broadcast(N, t)$ where t is the resilience

For $t = 0$, $Broadcast(N, 0)$:

Pulse

1. The general sends $\langle \text{value}, x_g \rangle$ to all processes, the lieutenants do not send.

Receive messages of pulse 1.

The general decides on x_g.

Lieutenants decide as follows:

- if a message $\langle \text{value}, x \rangle$ was received from g in pulse-1
 - then decide on x
 - else decide on $udef$
Lamport-Shostak-Pease Algorithm contd..

For $t > 0$, $\text{Broadcast}(N, t)$:

| Pulse | The general sends $\langle \text{value}, x_g \rangle$ to all processes, the lieutenants do not send. Receive messages of pulse 1. Lieutenant p acts as follows:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$t + 1$</td>
<td>Receive messages of pulse $t + 1$. The general decides on x_g. For lieutenant p: A decision occurs in $\text{Broadcast}_q(N - 1, t - 1)$ for each lieutenant q $W_p[q] = \text{decision in } \text{Broadcast}_q(N - 1, t - 1)$ $y_p = \text{max} (W_p)$.</td>
</tr>
</tbody>
</table>

Receive messages of pulse 1.

If a message $\langle \text{value}, x \rangle$ was received from g in pulse-1 then $x_p = x$ else $x_p = udef$.

Announce x_p to the other lieutenants by acting as a general in $\text{Broadcast}_p(N - 1, t - 1)$ in the next pulse.
Features

- **Termination:** If $\text{Broadcast}(N, t)$ is started in pulse 1, every process decides in pulse $t + 1$

- **Dependence:** If the general is correct, if there are f faulty processes, and if $N > 2f + t$, then all correct processes decide on the input of the general

- **Agreement:** All correct processes decide on the same value

The $\text{Broadcast}(N, t)$ protocol is a t-Byzantine-robust broadcast protocol for $t < N/3$

Time complexity: $O(t + 1)$
Message complexity: $O(N^t)$