Graph Theory: Graph Coloring

Pallab Dasgupta,
Professor, Dept. of Computer Sc. and Engineering, IIT Kharagpur
pallab@cse.iitkgp.ernet.in
K-coloring

A k-coloring of G is a labeling $f:V(G) \rightarrow \{1,\ldots,k\}$.

- The labels are colors
- The vertices with color i are a color class
- A k-coloring is proper if $x \leftrightarrow y$ implies $f(x) \neq f(y)$
- A graph G is k-colorable if it has a proper k-coloring
- The chromatic number $\chi(G)$ is the min k s.t. G is k-colorable
- If $\chi(G) = k$, then G is k-chromatic
- If $\chi(G) = k$, but $\chi(H) < k$ for every proper subgraph H of G, then G is color-critical or k-critical
Order of the largest clique

• Let $\alpha(G)$ denote the *independence number* of G, and $\omega(G)$ denote the order of the largest complete subgraph of G.

 – $\chi(G)$ may exceed $\omega(G)$. Consider $G = C_{2r+1} \vee K_s$
Cartesian Product

- The *Cartesian product* of graphs G and H, written as $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting (u,v) adjacent to (u',v') if and only if
 - (1) $u = u'$ and $vv' \in E(H)$, or
 - (2) $v = v'$ and $uu' \in E(G)$

- A graph G is *m-colorable* if and only if $G \square K_m$ has an independent set of size $n(G)$.

Also: $\chi(G \square H) = \max\{ \chi(G), \chi(H) \}$
Algorithm Greedy-Coloring

• The greedy coloring with respect to a vertex ordering \(v_1, \ldots, v_n \) of \(V(G) \) is obtained by coloring vertices in the order \(v_1, \ldots, v_n \), assigning to \(v_i \) the smallest indexed color not already used on its lower-indexed neighbors.
Results

• $\chi(G) \leq \Delta(G) + 1$

• If G is an interval graph, then $\chi(G) = \omega(G)$

• If a graph G has degree sequence $d_1 \geq \ldots \geq d_n$, then

\[
\chi(G) \leq 1 + \max_i \min\{ d_i, i-1 \}
\]
More results

- If H is a k-critical graph, then $\delta(H) \geq k - 1$

- If G is a graph, then $\chi(G) \leq 1 + \max_{H \subseteq G}\delta(H)$

- **Brooks Theorem:**

 If G is a connected graph other than a clique or an odd cycle, then $\chi(G) \leq \Delta(G)$.
Mycielski’s Construction

- Builds from any given k-chromatic triangle-free graph G a $k+1$-chromatic triangle-free super-graph G'.
 - Given G with vertex set $V = \{v_1, \ldots, v_n\}$, add vertices $U = \{u_1, \ldots, u_n\}$ and one more vertex w.
 - Beginning with $G'[V] = G$, add edges to make u_i adjacent to all of $N_G(v_i)$, and then make $N(w) = U$. Note that U is an independent set in G'.
Critical Graphs

• Suppose that G is a graph with $\chi(G) > k$ and that X, Y is a partition of $V(G)$. If $G[X]$ and $G[Y]$ are k-colorable, then the edge cut $[X,Y]$ has at least k edges.

• [Dirac] Every k-critical graph is $k-1$ edge-connected.
Critical Graphs

Suppose S is a set of vertices in a graph G. An S-component of G is an induced sub-graph of G whose vertex set consists of S and the vertices of a component of $G - S$.

- If G is k-critical, then G has no cut set of vertices inducing a clique. In particular, if G has a cut set, $S = \{ x, y \}$, then x and y are not adjacent and G has an S-component H, such that $\chi(H + xy) \geq k$.
Chromatic Recurrence

The function $\chi(G; k)$ counts the mappings $f: V(G) \rightarrow [k]$ that properly color G from the set $[k] = \{1, \ldots, k\}$.

- In this definition, the k-colors need not all be used, and permuting the colors used produces a different coloring.

- If G is a simple graph and $e \in E(G)$, then

$$\chi(G; k) = \chi(G - e; k) - \chi(G.e; k)$$
Line Graphs

The *line graph* of G, written $L(G)$, is a simple graph whose vertices are the edges of G, with $ef \in E(L(G))$ when e and f share a vertex of G.

- An Eulerian circuit in G yields a spanning cycle in $L(G)$. The converse need not hold.
- A matching in G is an independent set in $L(G)$; we have $\alpha'(G) = \alpha(L(G))$.
Edge Coloring

A \textit{k-edge-coloring} of G is a labeling \(f: E(G) \to [k] \)

- The labels are \textit{colors}
- The set of edges with one color is a \textit{color class}.
- A \textit{k-edge-coloring} is \textit{proper} if edges sharing a vertex have different colors; equivalently, each color class is a matching
- A graph is \textit{k-edge-colorable} if it has a proper \textit{k-edge-coloring}
- The \textit{edge-chromatic-number} \(\chi'(G) \) of a loop-less graph G is the least \(k \) such that G is \textit{k-edge-colorable}
Results

- \(\chi'(G) \geq \Delta(G) \).
- If \(G \) is a loop-less graph, then \(\chi'(G) \leq 2\Delta(G) - 1 \).
- If \(G \) is bipartite, then \(\chi'(G) = \Delta(G) \).

A regular graph \(G \) has a \(\Delta(G) \)-edge coloring if and only if it decomposes into 1-factors. We say that \(G \) is 1-factorable.

- Every simple graph with maximum degree \(\Delta \) has a proper \(\Delta + 1 \)-edge-coloring.