1. Consider a fuzzy set \(A \) defined by the trapezoidal membership function \(\text{trapezoid}(x; 10, 20, 50, 90) \).

Determine de-fuzzification results using (a) Bisector of Area (b) Mean of Maximum

\[8+2=10 \]

2. Consider a Mamdani Fuzzy Model for inferencing with the following rules (Universe for \(X \) is \([-10,10]\) and universe for \(Y \) is \([0,10] \)):

i. If \(x \) is Small then \(y \) is Small

ii. If \(x \) is Medium then \(y \) is Medium

iii. If \(x \) is Large then \(y \) is Large

The antecedent fuzzy set memberships are defined as:

\(\text{Small } X = \text{trapezoid}(x; -10, -10, -6, -2); \)

\(\text{Medium } X = \text{trapezoid}(x; -6, -2, 2, 6); \)

\(\text{Large } X = \text{trapezoid}(x; 2, 6, 10, 10); \)

The consequent fuzzy sets are defined as:

\(\text{Small } Y = \text{trapezoid}(y; 0, 0, 2, 4); \)

\(\text{Medium } Y = \text{trapezoid}(y; 2, 4, 6, 8); \)

\(\text{Large } Y = \text{trapezoid}(y; 6, 8, 10, 10). \)

What would be the Mamdani Model output for

(a) crisp input \(x = 0 \) using centroid defuzzification

(b) crisp input \(x = -8 \) using centroid defuzzification

(c) crisp input \(x = -4 \) using mean of maximum defuzzification

(d) crisp input \(x = 4 \) using largest of maximum defuzzification

\[6+6+4+4=20 \]

3. Consider the following set of data points: \(\{0, 10, 3, 12\} \). Assume an initial pseudo-partition with memberships defined as follows:

<table>
<thead>
<tr>
<th>Data point</th>
<th>0</th>
<th>10</th>
<th>3</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.1</td>
<td>0.75</td>
<td>0.2</td>
<td>0.9</td>
</tr>
<tr>
<td>A2</td>
<td>0.9</td>
<td>0.25</td>
<td>0.8</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Determine the pseudo-partition after one iteration of c-means clustering (with \(c = 2 \)) using \(m = 2 \). \[15\]
4. Consider maximization of the objective function $f(x) = x^2$ for $x = 0..31$. Use population size of 4 chromosomes.
 (a) Form the initial population
 (b) Show the next generation using
 (i) stochastic remainder sampling without replacement
 (ii) stochastic sampling with replacement

Note: You need to show only one next generation. First, by starting from the initial population using (i); then once again starting from the initial population, but this time using (ii)

Use the following random nos. for answering question no. 4. Whenever you are using a random no., mention the corresponding Srl No. for ease of tracking the steps.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>16</td>
<td>0.4</td>
<td>31</td>
<td>0.9</td>
<td>46</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>17</td>
<td>0.8</td>
<td>32</td>
<td>0.1</td>
<td>47</td>
<td>0.3</td>
</tr>
<tr>
<td>3</td>
<td>0.7</td>
<td>18</td>
<td>0.8</td>
<td>33</td>
<td>0.2</td>
<td>48</td>
<td>0.2</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>19</td>
<td>0.6</td>
<td>34</td>
<td>0.2</td>
<td>49</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>0.1</td>
<td>20</td>
<td>0.5</td>
<td>35</td>
<td>0.3</td>
<td>50</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>21</td>
<td>0.1</td>
<td>36</td>
<td>0.7</td>
<td>51</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>0.8</td>
<td>22</td>
<td>0.9</td>
<td>37</td>
<td>0.8</td>
<td>52</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>0.9</td>
<td>23</td>
<td>0.2</td>
<td>38</td>
<td>0.7</td>
<td>53</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>0.1</td>
<td>24</td>
<td>0.3</td>
<td>39</td>
<td>0.5</td>
<td>54</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>25</td>
<td>0.4</td>
<td>40</td>
<td>0.4</td>
<td>55</td>
<td>0.3</td>
</tr>
<tr>
<td>11</td>
<td>0.5</td>
<td>26</td>
<td>0.5</td>
<td>41</td>
<td>0.5</td>
<td>56</td>
<td>0.4</td>
</tr>
<tr>
<td>12</td>
<td>0.7</td>
<td>27</td>
<td>0.4</td>
<td>42</td>
<td>0.3</td>
<td>57</td>
<td>0.8</td>
</tr>
<tr>
<td>13</td>
<td>0.8</td>
<td>28</td>
<td>0.6</td>
<td>43</td>
<td>0.8</td>
<td>58</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>0.9</td>
<td>29</td>
<td>0.7</td>
<td>44</td>
<td>0.2</td>
<td>59</td>
<td>0.5</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
<td>30</td>
<td>0.2</td>
<td>45</td>
<td>0.1</td>
<td>60</td>
<td>0.6</td>
</tr>
</tbody>
</table>